
AD-AI31 085 DACS (DATA AND ANAIYSIS CENTER FOR SOFTWARE) CONVERSION I/
DATA COLLECTION FORMS(U DATA AND ANALYSIS CENTER FOR
SOFTWARE GRIFFISS AFR NY JUN 81 F30602 78 C 0255

UNCLASSIFE FOG 14/2

i~mhhhhh-iEE

1111 1I .0112~Z.

MICROCOPY RESOLUTION TEST CHART
NAIN -Wp~k

SECURITY CLASSIFICATION OF THIS PAGE (When Dates En.-ri'd)

REPORT DOCUMENTATION PAGE READ INSTRLICTICQNS

BEFORE COMPLETfNI FORM.REPORT NUMBER _CCEs 3 RECIPIENT'S CATALOG NMER

4. TITLE (And Subtitle) 5 TYPE OF REPORT & PERIOD COVERED

DACS'CONVERSION DATA COLLECTION FORMS Interim Report
Jan. 1981 - June 1981

6. PERFORMING O4G. REPORT NUMBER

N/A
AU THOR(s) S. CONTRACT OR GRANT NUMBER(S)

N/A F30602-78-C-0255

PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Data & Analysis Center for Software AREA & WORK UNIT NUMBERS
-' RADC/ISISI

Griffiss AFB, NY 13441
CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Rome Air Development Center (COEE) June 1981
Griffiss AFB, NY 13441 13 NUMBER OF PAGES

_17
MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

Same UNCLASSIFIED
15a. DECLASSIFICATION DOWNGRADING

SCHEDULE

N/A
DISTRIBUTION STATEMENT (of this Report)

Approved for public. relecse; distribution unlimited

4Z.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: John Palaimo (COEE) Available from:
DACS Source Code No. 413570 Data & Analysis Center for Software

LU eost RADC/ISISI
Griffiss AFB, NY 13441

La 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Software Conversion Software Experience Data
Conversion Costs Data Parameters
Data Collection Data Repository

20. ABSTRACT (Continue on reverse side if necessary and Identify by block number)

This product consists of three data collection forms to be used to describe con-
version projects. The first form, the Software System Overview Form is designed
to capture data which describes the general nature of the conversion effort.
The second form, the Detailed Resource Expenditure Form, is used to capture
data on the personnel effort and machine usage required to perform the conver-
sion. The Conversion Problem Report Form is used to identify problems en-
countered, as well as the method of detecting and correcting errors. The set
contains 3 forms and 13 pages of definitions and guidelines for using the forms.

DD IOJAN3 1473 EDITION OF I NOV6SSOUSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (ien Data Entered)

SECURITY CLASSIFICATION OF THIS PAGEOWbu Data Entered)

SECURITY CLASSIFICATIOgl OF 'r-' PAGE)'Wlin Date Entered)

DACS CONVERSION DATA COLLECTION FORMS

Purpose

The economics and logistics of software inventory conversion are major
procurement issues. In many cases the cost of the software conversion
equals or exceeds the cost of the hardware procured. When a large
multi-site hardware upgrade is involved, conversion may take years and
require a sizeable dedicated programming staff to complete. Conversion is a
relatively new area of interest to software engineers but one that promises
to present a whole new range of problems. At this time, little is known
about the types of problems likely to occur during a conversion, the
frequency with which they occur across projects, their severity, and how
they may be corrected or prevented. By collecting data on past and present
conversion efforts, information can be compiled whi-h can be used for
identifying problems and their demographics. A database of conversion data
will help to conduct feasibility studies, estimate costs for performirng
conversions, identify conversion cost drivers, and help to establish
cost-benefit relationships for conversion aids and tools. The DACS is
seeking to establish such a database which will be made available to the
software engineering community.

The Conversion Data Collection Forms

DACS hes des-g .e-&-three data collection forms / to be used during
software conversion.,? The first form, the Software System Overview (SSO)
seeks to capture those'\types of data which describe the general nature of
the conversion effort The second form, the Detailed Resource Expenditure
(DRE) form, seeks to capture data which could be used to identify the
personnel effort and ,chine usage required to perform the conversion.
(Figure 1 graphically dep cts a sequence of activities which occur during
a conversion.) The third f om, the Conversion Problem Report (CPR) is used
to identify problems encuntered, as well as the method of detecting and
correcting errors. By filling out a CPR as soon as a problem surfaces
during a conversion effort, the chances of any modification being
overlooked can be minimized.

Three reports were used extensively in preparing these forms. They are:

(1) DPSC Experience Using the NAVDAC Conversion Management System prepared
by GSG, Inc., 51 Main St., NH, March 10, 1980.

(2) Handbook for Estimating Conversions Costs of Large Business Programs
by Paul Oliver, director of the Federal Compiler Testing Ser.'fce,
Washington, DC 20376, Feb. 14, 1979.

(3) The Software Engineering Laboratory by Victor R. Basili, et al.,
Technical Report TR-535, SEL 1, Hay 1977. 104 p. Available from: V. R.
Basili, University of Maryland, College Park, MID.

1

p3 '

Software Svstem Overview (SSO)

This form is used to collect data concerning (1) the general nature of
the conversion effort, (2) the size and characteristics of the software
system before the conversion and after, (3) the difficulty of the
conversion and (4) the technology utilized.

Detailed Resource Expenditure (DRE)

This form is used to collect data concerning the effort required to
perform the subtasks required during a con-version with respect to personnel
and machine resources. Much of the data on this form will be a summary of
the Conversion Problem Reports involved in the conversion effort.

Conversion Problem Report (CPR)

This form can be used as a quality assurance tool and tracking
mechanism for the conversion effort. The completion of a CPR each time a
new problem surfaces creates a formal recording and tracking machanism. It
is recomended that a lower level or installation - oriented worksheet be
employed to keep a record of each detail in the conversion effort related
to this CPR. At or near termination of the change/correction effort, the
detailed data can be transcribed to the CPR form.

2

DACS CONVERSION DATA C OLLECTION FORMS

START
----------------------------------- ----------------------------

EMBEDDED --OWN TRANSLATE
FEASIBILI PLANNING CODE TO CODE
ANALYSIS S STANDARD

---------- -------------------------------

TEST DATA
PREPARATIO

--- -------------

SYSTEM EXECUTABLE UNIT TEST COMPILE

TEST SYSTEM

:CODE CONVERSION

CHECK CHECK
RESULTS RESULTS

PERFORM

PERFORM CORRECTION

CTIONS

RECOMPILE RECOMPILE

UNIT TESTING

LVMGRATION -----------------
TESTING---------------- --------------------

DATABASE COMPLETE FULL SYSTEM
L SYSCONVERSION DOCUMEN- TEST

TATION

gF

CHECK OT & E

Chart adapted from
RESULTS

DSPC Experience !!LIM
the NAVDAC Conversion
management System PERFORM CLEANUP

CORRECTIONS

R E C OMtMWP I

FmL-SYSTEm nsl

-- --- -------------

FIGURE 1 CONVERSION TASKS

3

DACS CONVERSION DATA COLLECTION FORMS

SYSTEM OVERVIEW€

INSTRUCTIONS

The purpose of the system overview is to describe the conversion
environment. This form should be completed at both the beginning and at the
end of the conversion process. The goal is to have a description of the
software system characteristics before and after conversion.

Explanations and definitions of the form's data elements are presented
below.

I. Project Name ID - Give the name of the project or a special ID assigned

to the project.

2. System Description - Give a brief summary of the application of the
system software being converted.

3. System/CPCIs Name - The name(s) of the highest level system components
being converted.

NUMBER OF SYSTEM COMPONENTS

Give the number of components as they apply to the software system
being converted.

4. CPCI - Computer Program Configuration Item - This is a software system
which is executed separately. It is the highest level of executable
software which does not cross computer boundries. For example, an
operating system and an application program are separate CPCI's.

5. CPCG - Computer Program Configuration Group - This is one level lower
than a CPCI. It is generally structured along functional lines. For
example, separate links of a multiple overlay structure may be separate
CPCGs. Different CPCGs within a CPCI are callable programs which
perform major, non-overlapping functions.

6. CPC - Computer Program Component - This is one level lower than a CPCG.
It does not constitute an executable package. Software at this level is
an individual subprogram which calls lower level subprograms. These may
contain, INCLUDE or SELECT statements to incorporate separately defined
segments (blocks) of source code into the CPC.

7. Segment - The lowest level of source code in a program or CPCI. It is a
block of code which evaluates a particular algorithm or peforms a very
specific interface function such as COMPOL or LABELED (named) COMMON
block(s). It is not a callable subroutine.

8. Conversion Duration - Indicate the total duration of the conversion
project in months. Use the letter "E" to indicate if this parameter is
estimated.

4

9. Conversion Type - Note the type of conversion and the specific
requirement, (e.g. language, from COBOL 68 to COBOL 74).

SOFTWARE SYSTEM CHARACTERISTICS

The following items describe the software system at the beginning and
at the end of the conversion.

10. Language(s) - The language or languages in which the program(s)
comprising this software system has(have) been written. This will be
the host language at the beginning and the target language at the end
of the conversion.

11. Machine - The computer on which the system was developed for or
converted to run on. It will be the host machine at the beginning and
the target machine at the end of the conversion project.

12. Special Hardware Requirements - Note only those hardware requirements
which are going to impact the conversion effort.

13. Number of lines of Code - Indicate how many lines of source code make
up the system being converted exclusive of generalized sorts and other
system utilities. Indicate whether the number recorded referes to E -
Executable Code or A - Actual Lines including comments and other
non-executable lines. Do this for both (HOL) High Order Language on
(ALC) Assembler Language Code.

14. Number of Job Streams - Job Streams are the number of job/run streams
that are used to process a sequence of application programs. Job/run
streams typically involve execution of two or more programs, with or
without sorts and utilities, executed in sequence without interruption
and with data passing from one program to another.

15. Number of Independent Runs - Record the number of independent runs.
Independent runs are the number of programs that run independently
without updating or maintaining files (e.g. report writer extract from
the master file).

16. Number of files - Indicate how many data files and master files are
accessed by all of the system component(s). Temporary work-in-process
files which are not normally saved should be included if it's
anticipated that they may be affected by the conversion.

17. Number of Databases - Indicate the number of databases required by the
software system.

18. Support Software Developed/Utilized for This Conversion - List the
executable software that was developed and/or used by the project to
specifically support the conversion effort. Enter detailed information
only if immediately available or if the utilized support software is
not a well known product. List such information as source language,

5

number of lines of code (indicate whether the reference is to
executable code). Typical examples are translators, meta-compilers,
test drivers and graphics interface software.

19. Resource ExpVenditure Forms - List all the Detailed Resource Expenditure
form numbers which contain the effort expenditures required to perform
this conversion.

20. This Form Prepared by - Give the name of the person completing the
form.

21. Project Contact - Give the name of the person who should be contacted
with respect to acquiring additional data or for clarification of data
on this form.

22. Staff Size - Indicate how many people are assigned to the project.
Include administrative, technical and clerical personnel.

23. Conversion Performed - Please check those descriptors which apply to
ho performed the conversion and where it was performed.

24. Difficulty of Conversion - Give the number of system components or
modules belonging to the system which are of each level of difficulty.
Translation - Essentially automated (at least 90% of source code)
conversion with little personnel intervention during the translation
process.
Complex Translation - Conversion is largely automated (75 - 90% of
source code) but logic changes are required and imust be performed.
Redesign or reprogramming - Automated translation is applicable to no
more than 75% of the source code (but at least 50% can be
translated); significant logic and database changes are necessary.

25. Special Considerations/Constraints - Note any environmental or other
factors which impact the conversion effort (e.g. limited availability
of machine resources, such as, memory/CPU usage, peripheral device(s)
or other hardware differences or requirements changes during
conversion).

26. Technology - Note the software engineering technologies and techniques
applicable to the project. Technologies not listed may be added
(Appendix 1 defines the listed technologies). In the space preceding
the Technology, check under 'D if the technology was utilized during
original development (if that information is available). Check under
'C' if the technology was utilized during conversion. Check under both
D and C if the technology was utilized during both development and
conversion. Check under T' is the technology was utilized only during
testing.

6

---- 1 '4 4.Vol

0a (a 0 D 4

Ce:-Oh-C0

to(1 -4 z g 1. m SCC
4-0 m - 0 Q-- e v ~ .-

-,~D C 2 44 .

8 (00u 0 . 1A.x i- Q A I
I S -W - - -% - - - - - ---

10 - - -C -' - - - - --.

C.) C

0
NO rn aA I4

CU - -, :! -- 0 t54 eca~ t. M
0! 96 a0 U- C I- -C a Cs .

E- CE- .
0 43 CC0-*

99 a a > a. e a u.~o~

a~ ~ ba . 0 .I0. W

a.~~ e
. ew a..a W 0ac C

--

0. 9k - U ,w ca.? -------
ag 16 ha C2 ~~~~- - - .-------------

04

0-4

4, ~ I

2 9
0)

ad .

U a
0 ..

II
A. IL

41 C w I. i .44
0 10

ca to C I

000

111 IA"C 4C ~ a

DACS CONVERSION DATA COLLECTION FORMS

DETAILED RESOURCE EXPENDITURE

INSTRUCTIONS

The purpose of this form is to collect resource expenditure data at
the subtask level. Much of the data for this form is accumulated from the
Conversion Problem Report(s) (CPRs) involved in the conversion effort.
Several of these forms may be collected on a large project (where different
"teams" might be assigned to different groups of Conversion Problem
Reports). Make out at least one of these forms for each CPCI comprising the
software system being converted. In cases where data is unavailable or not
appropriate to the project, indicate with UN = Unavailable or NA = Not
appropriate.

1. Project Name - Give the name of the project.

2. CPCI Name - Give the name of the CPCI (program).

3. CPCI Description - Give a brief summary of the function or type of
application of this CPCI.

4. Date Start/Finish - Indicate the date of the beginning and the end of
the conversion effort for this CPCI.

5. Form Prepared By - The name of the person initiating the form.

6. Contact/Team Leader - Give the name of the person to be contacted for
further information about the resources recorded on this form. This
contact person may not necessarily be the same as the one named on the
System Overview Form.

7. CPRs - List the Conversion Problem Report form numbers which are
summarized on this form.

8. Structures Impacted - Enter the number of relevent components (CPCGs,
7PCs, segments, lines, files, databases, etc.) of the CPCI (program)
which have been modified, deleted and added. Each of these components
have been defined in the System Overview instructions.

9. Feasibility Analysis - Give the personnel and computer usage effort
data to perform the feasibility analysis. This is the analysis required
in order to determine the best way of replacing an existing data
processing system with a new one. Activities include defining the
inadequacies of the current system and collecting an inventory of the
current software products, defining how the new system 8hould differ
from the old one and providing reconmendations for converting to the
new system.

10. Prepare Conversion Specifications - Give the personnel and computer
usace effort data to prepare the conversion specifications and tc
develop a detailed description of work to be done. The "specifications"

8

document the results of the feasibility analysis and are used as a
master plan for implementing the conversion.

11. Generate and Validate Test Data - Give the personnel and computer usage
effort data required to generate and validate the test data. This

includes selecting and generating sample test data and determing the
effectiveness with which the test data is able to exercise programs.

12. Recode Embedded Code - Give the personnel and computer usage effort
data for recoding embedded code. This involves recoding to standard
Higher Order Language or to the Assembler Level Code of the target

machine.

13. Translate to Target Language/Machine - Give the personnel and computer
usage effort data for editing and transforming higher order language
programs to obtain compatibility with the target systems compiler.

14. Perform Unit Testing - Give the personnel and computer usage effort
data for individually testing each converted subroutine.

15. Perform Integration Testing - Give the personnel and computer usage
effort data for constructing an executable version of the subsystem and
completing integration testing. This includes replacing the modules
which were modified with tested modules.

16. Convert Database - Give the personnel and computer usage effort data
for converting production file media and formating to the target
language/machine.

17. Complete Documentation - Give the personnel and computer usage effort
data for completing the final documentation to identify changes,
developing a system test plan and developing an updated user's guide.

18. Perform Full System Test - Give the personnel and computer usage effort
data to perform full system testing. This includes replacing all
subsystems which were modified and tested and achieving successful
production runs using actual or simulated test data.

19. Perform Operational Test and Evaluation - Give the personnel and
computer usage effort data for operational testing and evaluation. This
involves running a redundant production operation using the new
configuration with the goal of final user a-ceptance. Actual data from
the program's operational environment is usually utilized at this stage.

20. Clean-up - Give the personnel and computer usage effort data for
clean-up (e.g. construct library tapes, archive old programs, etc.).

(Figure 1 shows the sequential relationship of the individual tasks
involved in an overall conversion of a system.)

PERSONNEL (MAN-HOURS)

21. Manager - Note the number of hours of management-level activity charged
to each task.

-- . , i i i d i i . i

22. Conversion Analyst - Note the number of hours charged to each task.
These tasks include feasibility analysis and requirements analysis.

2. Technical - Note the number of hours charged to each task. These tasks
include design, programming and testing.

24. Clerical - Note the number of clerical hours charged to each task.
Clerical activities include keypunching, data entry, typing

documentation, submitting runs and maintaining the program library.

COMPUTER USAGE

25. Machine - Note the name and model of the machine (e.g. IBM 370,
Honeywell 6180, etc.)

26. No. Runs - Note the total number of computer runs to complete each
task.

27. Computer Time - Note the total number of CPU and I/O hours to cormplete
each task.

28. Completed By - Pote the name of the individual completing the entries
on this line.

29. Support Software Developed/Utilized for This Effort - List the
executable software that was developed and/or used by the project to
specifically support this conversion effort. Enter detailed information
only if immediately available or if the utilized support software is
not a well known product. List such information as source language,
number of lines of code (indicate whether the reference is to
executable code). Typical examples are translators, meta-compilers,
test drivers and graphics interface software.

10

0 I -

i Ii
- z [S

- I tEn

I co

cc X
96 to

or C-3

co -- L

DACS CONVERSION DATA COLLECTION FORMS

CONVERSION PROBLEM REPORT

INSTRUCTIONS

The purpose of this form is to capture data which can be used for
analysis of the types of problems which occur during a conversion as well
as to identify the most beneficial methods of detection and correction of
these problems/faults. Complete a separate form for each problem
encountered during the conversion.

1. Project -Give the name of the project.

2. Number -This number is to be assigned by the reviewer in charge of
tracking the conversion effort. The number should be a unique number or
coee so as to uniquely identify this conversion problem effort. It is
suggested that the numbers be issued in sequence and that the sequence
be preceded by two digits representing the year the problem surfaced.

3. Current date - Indicate the date on which an entry is first made on the
'Form, even if the form is not completed at that time.

4. Date Start - Indicate the date when it was first realized a problem
existed.

5. Date Finished - Indicate the date when the problem was corrected,
worked around or otherwise closed.

6. CPCI/CPCG/CPC/Segment - Circle the level of the highest system
component being impacted by this problem and specify the name of that
component.

7. Contact/Team Leader - Give the name, address and telephone number(s) of
the person who should be contacted with respect to acquiring additional
data or for classification of data on this form.

8. How was the Problem Detected - Indicate what event triggered an
awareness of the problem.

9. Nature of Problem - Give a brief description of the problem in terms of
the functional application.

10. Category of Problem/Fault - Check the category which applies. If the
category is not listed, supply a category in the space provided which
corresponds to the description in item 9. More than one item may be
checked.

11. Change Needed to Correct Problem - Give a brief description of the
change needed to correct the problem.

12

TIM4E TO:

12. Isolate Error -Indicate the number of hours required to determine the
source and scope of the error.

13. Design Change - Indicate the number of hours required to design, not
implement the change.

14. Implement Change - Indicate the number of hours required to implement
the change, including recoding, integration, testing and operational
implementation.

15. Total Number, of CPCGs, CPCs, Segments, Lines, Files, Databases, etc.
-Enter the number of the software system components at each level of

detail which have been modified, deleted and/or added to resolve the
problem/fault being addressed by this CPR.

16. Techniq~ues/Tools used in Detecting the Fault, Isolating the Cause and
Designing and/or Implementing Change - Imark an "S" or a 'T" in all
cells which apply to this problem/fault. Use an "S" to indicate that
this tool or technique was Successful or Marginally Succesful in
achieving the goal; use a "T" to indicate that the tool or technique
was Tried. Enter the total number of manhours and computer hours used
during each listed activity.

17. Additional Information - This section is intended to permit explanation
of any items you feel nay be significant in categorizing the problem or
fault, understanding its cause, determining how it was found and
explaining any effects it may have that are not fully covered in
previous sections.

18. Relation to Correction Activities for a Previous Fault/Problem
Yes - If you can determine that the problem was the result of some
previous change to the software during this or a previous conversion
effort, whether or not in the same subroutine, module or data file.
Check this space and reference the problem report form completed for
the previous change. Specify if previous change was for enhancement,
correction or conversion. Specify if error was detected during
analysis, code translation, recoding, unit test, integration test or
system test.
No - If you can determine that this problem is unrelated to previous
changes made during this conversion, check this space.
Can't tell - If you suspect that this error is related to some previous
change during this conversion, but can't be sure, check this space and
explain why you are not sure on the line below.

19. Person Fillin& out this Form - Give the name(s) and telephone numbers
of the person(s) filling out this form.

13

0

1-4 z c

Z9 0 C 0 w.

-4 04 @

r- cc w4 ca.

w2 w 0 0 -

9.4-4 S42 ~ 4
- 0 w~ c w

o 0 0L c OO

02 > C4 Ci 4

ba u~ 41.4 C 2

-44 M 4E

C W) 0 @~42 042

cc~ $4 cc CO @ ~4
X 0 0 2

C. C.). Z Z0
cc m 2 b

14
- 00

-* 0 0 14 'm mI

44 2
.61 14

.CO

> 0 to2

. NC 1) .- 2 I
as 4.2 b

0. I c aC

-4 ca 41A.d
1... 1. m OW

Z~ .4 . @2.4 0 u.

-P : 0 r. zI
.9 u 0 02 . .

U3~ ~ ~ m 0t

0cc 2..

I0C4. 4 '

_0 M. -. 1 mt 4

I. ~ ~ I 'S4 'm44 -f

l a4 a~ " I - cm w. m4 = ' 0

'~m n' 0 0 t.
'1 a. C L/)

Ul -.3 1-
~j sr~ ss ft4, 41r-

0 0Zt-~

En '-I

ro o

0, M

l 00

rft C i

fe

-4 C

to

0-I Ile

APPENDIX 1

TECHNOLOGY DEFINITIONS

1. Chief Programmer Team - A chief programmer team is a structured team of
specialists for software development headed by a chief programmer. The
team has at its core three members: the chief programmer, the back-up
programmer and the secretary/librarian. The rest of the team consists of
prograers as required. The team is normally limited to less than ten
members.

2. Automated Design Tools - Computer programs used to provide an understandable
representation of the software design as it evolves.

3. Automated Requirements Tools - Computer programs which are used to provide a
succinct and unambiguous specification of the system based on computer require-
ments5.

4. HIPO Design Aides - A graphical technique that defines each system component
by the transformation of its input datasets to its output datasets and also
defines the hierarchical relationships between components.

5. Process Design Language - A formal algorithmic specification of a software
component.

6. Structure Charts - A graphical technique which illustrates the relationships
between the components of a software system.

7. Top-Down Development - A software development approach that identifies major
functions to be accomplished, then proceeds from there to an identification of
the lesser functions that derive from the major ones.

8. Modular Decomposition - The process of breaking a large program into small
modules that perform complete functions.

*9. Program Support Library - A software system which provides tools to organize,
implement and control software development.

10. Simulation - A computer program that provides the target system with inputs
or responses that resemble those that have been provided by the process for
the device being simulated.

*11. Structured Programming - The activity of programming with a limited set of
program constructs.

*12. Walk-Throughs - A formal meeting by various numbers of a project for the
review of source code and design for technical adequacy and error detection.

13. Critical Piece First - The implementation of the most critical aspects of the
system first.

14. Database Analyzer - A computer program that reports information on every usage
of data, identifies each program using any data elements and indicates whether
the program inputs, uses, modifies or outputs the data element.

16

M 4 m 2. - - --

o~ ~ T 4 a~-
-4

CL.~.w-
a

'4*. -.

0 0n m

pa M 0

e3, t- -

CA r - a

~0 I

E*n

InI

Cl 1

z M
La-

0

C'Sc

rH z

H U2

IDATE

1L M E

